13 research outputs found

    Future Opportunities and Challenges in Remote Sensing of Drought

    Get PDF
    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health

    Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Water Security

    Get PDF
    River basins for which transboundary coordination and governance is a factor are of concern to US national security, yet there is often a lack of sufficient data-driven information available at the needed time horizons to inform transboundary water decision-making for the intelligence, defense, and foreign policy communities. To address this need, a two-day workshop entitled Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Global Water Security was held in August 2017 in Maryland. The committee that organized and convened the workshop (the Organizing Committee) included representatives from the National Aeronautics and Space Administration (NASA), the US Army Corps of Engineers Engineer Research and Development Center (ERDC), and the US Air Force. The primary goal of the workshop was to advance knowledge on the current US Government and partners' technical information needs and gaps to support national security interests in relation to transboundary water. The workshop also aimed to identify avenues for greater communication and collaboration among the scientific, intelligence, defense, and foreign policy communities. The discussion around transboundary water was considered in the context of the greater global water challenges facing US national security

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    NASA Tools for Climate Impacts on Water Resources

    No full text
    Climate and environmental change are expected to fundamentally alter the nation's hydrological cycle and water availability. Satellites provide global or near-global coverage using instruments, allowing for consistent, well-calibrated, and equivalent-quality data of the Earth system. A major goal for NASA climate and environmental change research is to create multi-instrument data sets to span the multi-decadal time scales of climate change and to combine these data with those from modeling and surface-based observing systems to improve process understanding and predictions. NASA and Earth science data and analyses will ultimately enable more accurate climate prediction, and characterization of uncertainties. NASA's Applied Sciences Program works with other groups, including other federal agencies, to transition demonstrated observational capabilities to operational capabilities. A summary of some of NASA tools for improved water resources management will be presented

    A Summary of NASA Related Contributions for the Remote Sensing of Evapotranspiration in Support of Water Management and Agriculture

    No full text
    The amount of evapotranspiration (ET) to the atmosphere can account for 60% or more of the water loss in many semi-arid locations, and can critically affect local economies tied to agriculture, recreation, hydroelectric power, ecosystems, and numerous other water-related areas. NASA supports many activities using satellite and Earth science data to more accurately and cost effectively estimate ET. NASA ET related work includes the research, development and application of techniques. The free and open access of NASA satellite data and products now permits a much wider application of ET mapping. Typically the NASA supported approaches ranges from large regional and continental ET mapping using MODIS (also with AIRS and CERES), GRACE (gravimetric water balance), geostationary (e.g., GOES and Meteosat for near continental sca|e), land surface modeling (i.e, Land Data Assimilation Systems) to fine scale mapping such as provided bvLandsatdata(<100 m). Usually satellite or airborne thermal imagery are used as input to an ET estimated surface energy balance based approach. There are currently several of these ET approaches under development and implementation including 'METRIC', 'SEBS', 'ALEXI/DisALEXI', etc.. One exception is an approach using GRACE satellite data that estimates the terrestrial water storage using gravimetric data over large areas and estimates ET indirectly. Also land surface modeling within the context of data assimilation and integration schemes provides the capability to integrate in situ, ancillary and satellite together to provide a spatially and synoptic estimates of ET also for use to provide for short-term ET predictions. We will summarize NASA related activities contributing to the improved estimation of ET for water management and agriculture with an emphasis on the Western U3.. This summary includes a description of ET projects in the Middle Rio Grande, Yakima, North Platte and other selected basins in the western US. We will also discuss plans to further address ET applications through working with the USDA and the Group on Earth Observations (GEO) to extend and evaluate western U.S. ET mapping to other parts of the U.S. and internationally

    NASA's Soil Moisture Active Passive (SMAP) Mission and Opportunities for Applications Users

    Get PDF
    Water in the soil鈥攂oth its amount (soil moisture) and its state (freeze/thaw)鈥攑lays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, soil moisture touches upon human lives in a number of ways鈥攆rom the ravages of flooding to the needs for monitoring agricultural and hydrologic droughts. Because of their relevance to weather, climate, science, and society, accurate and timely measurements of soil moisture and freeze/thaw state with global coverage are critically important.United States. National Aeronautics and Space Administratio
    corecore